Магия Электроники

Теория информации


Пропускная способность систем передачи информации

Одной из основных характеристик любой системы передачи информации, кроме перечисленных выше, является ее пропускная способность.

Пропускная способность – максимально возможное количество полезной информации, передаваемое в единицу времени:

c = max{Imax} / TC ,

c = [бит/с].

Иногда скорость передачи информации определяют как максимальное количество полезной информации в одно элементарном сигнале:

s = max{Imax} / n,,

s = [бит/элемент].

Рассмотренные характеристики зависят только от канала связи и его характеристик и не зависят от источника.

Пропускная способность дискретного канала связи без помех. В канале связи без помех информацию можно передавать неизбыточным сигналом. При этом число n = m, а энтропия элементарного сигнала HCmax = logK.

max{IC} = nHCmax= mHCmax .

Длительность элементарного сигнала , где – длительность элементарного сигнала.

где FC – спектр сигнала.

Пропускная способность канала связи без помех

Введем понятие скорости генерации элементарного сигнала источником информации:

Тогда, используя новое понятие, можно преобразовать формулу для скорости передачи информации:

c = BlogK.

Полученная формула определяет максимально возможную скорость передачи информации в дискретном канале связи без помех. Это следует из предположения о том, что энтропия сигнала максимальна.

Если HC < HCmax, то c = BHC и не является максимально возможной для данного канала связи.

Пропускная способность дискретного канала связи с помехами. В дискретном канале связи с помехами наблюдается ситуация, изображенная на рис. 6.

Рис.6

Учитывая свойство аддитивности, а также формулы Шеннона для определения количества информации, рассмотренные выше, можно записать

IC = TC FC log(AK PC),

IПОМ = TП FП log(APП).

Для получателя источник полезной информации и источник помехи равноценны, поэтому нельзя на приемной стороне выделить составляющую помехи в сигнале с результирующей информацией

IРЕЗ = TC FC log(AK (PП + PC)), если TC = TП , FC = FП .

Приемник может быть узкополосным, а помеха находиться в других интервалах частот. В этом случае она не будет влиять на сигнал.

Будем определять результирующий сигнал для наиболее “неприятного” случая, когда параметры сигнала и помехи близки друг к другу или совпадают. Полезная информация определяется выражением

Эта формула получена Шенноном. Она определяет скорость передачи информации по каналу связи в случае, если сигнал имеет мощность PC, а помеха – мощность PП. Все сообщения при такой скорости передадутся с абсолютной достоверностью.

Формула не содержит ответа на вопрос о способе достижения такой скорости, но дает максимально возможное значение с в канале связи с помехами, то есть такое значение скорости передачи, при которой полученная информация будет абсолютно достоверной.

На практике экономичнее допустить определенную долю ошибочности сообщения, хотя скорость передачи при этом увеличится.

Рассмотрим случай PC >> PП. Если ввести понятие отношения сигнал/шум

PC >> PП означает, что . Тогда

Полученная формула отражает предельную скорость мощного сигнала в канале связи.

Если PC << PП , то с стремится к нулю. То есть сигнал принимается на фоне помех. В таком канале в единицу времени сигнал получить не удается.

В реальных ситуациях полностью помеху отфильтровать нельзя. Поэтому приемник получает полезную информацию с некоторым набором ошибочных символов. Канал связи для такой ситуации можно представить в виде, изображенном на рис. 7, приняв источник информации за множество передаваемых символов {X}, а приемник – за множество получаемых символов {Y}.

Рис.7 Граф переходных вероятностей K- ичного канала связи

Между существует определенное однозначное соответствие. Если помех нет, то вероятность однозначного соответствия равна единице, в противном случае она меньше единицы.

Если qi – вероятность принятия yi за xi, a pij = p{yi / xi} – вероятность ошибки, то

.

Граф переходных вероятностей отражает конечный результат влияния помехи на сигнал. Как правило, он получается экспериментально.

Полезная информация может быть оценена как IПОЛ = nH(X · Y), где n – количество элементарных символов в сигнале; H(X · Y) – взаимная энтропия источника X и источника Y.

В данном случае источником X является источник полезной информации, а источником Y является приемник. Соотношение, определяющее полезную информацию, можно получить исходя из смысла взаимной энтропии: заштрихованный участок диаграммы определяет сообщения, переданные источником X и полученные приемником Y; незаштрихованные участки отображают сигналы источника X, не дошедшие до приемника и полученные приемником посторонние сигналы, не передаваемые источником.

B – скорость генерации элементарных символов на выходе источника.

Для получения max[H(Y) – H(Y/X)] нужно по возможности увеличить H(Y) и уменьшить H(Y/X). Графически эта ситуация может быть представлена совмещением кругов на диаграмме (Рис. 2г).

Если же круги вообще не пересекаются, X и Y существуют независимо друг от друга.

В дальнейшем будет показано, как можно использовать общее выражение для максимальной скорости передачи при анализе конкретных каналов связи.



<<Назад Выход Вверх Дальше >>


Hosted by uCoz