Магия Электроники

Искусство схемотехники


Напряжение, ток и сопротивление

1.01. Напряжение и ток

Напряжение и ток — это количественные понятия, о которых следует помнить всегда, когда дело касается электронной схемы. Обычно они изменяются во времени, в противном случае работа схемы не представляет интереса.

Напряжение (условное обозначение: U, иногда Е). Напряжение между двумя точками — это энергия (или работа), которая затрачивается на перемещение единичного положительного заряда из точки с низким потенциалом в точку с высоким потенциалом (т. е. первая точка имеет более отрицательный потенциал по сравнению со второй). Иначе говоря, это энергия, которая высвобождается, когда единичный заряд «сползает» от высокого потенциала к низкому. Напряжение называют также разностью потенциалов или электродвижущей силой (э. д. с.). Единицей измерения напряжения служит вольт. Обычно напряжение измеряют в вольтах (В), киловольтах (1 кВ=103 В), милливольтах (1 мВ=10-3 В) или микровольтах (1 мкВ = 10-6 В). Для того чтобы переместить заряд величиной 1 кулон между точками, имеющими разность потенциалов величиной 1 вольт, необходимо совершить работу в 1 джоуль. (Кулон служит единицей измерения электрического заряда и равен заряду приблизительно 6•1018 электронов.) Напряжение, измеряемое в нановольтах (1 нВ = 10-9 В) или в мегавольтах (1 МВ=106 В) встречается редко.

Ток (условное обозначение: I). Ток — это скорость перемещения электрического заряда в точке. Единицей измерения тока служит ампер. Обычно ток измеряют в амперах (А), миллиамперах (1 мА = 10-3 А), микроамперах (1 мкА = 10-6 А), наноамперах (1 нА = 10-9 А) и иногда в пикоамперах (1 пкА = 10-12 А). Ток величиной 1 ампер создается перемещением заряда величиной 1 кулон за время, равное 1 с. Условились считать, что ток в цепи протекает от точки с более положительным потенциалом к точке с более отрицательным потенциалом, хотя электрон перемещается в противоположном направлении.

Запомните: напряжение всегда измеряется между двумя точками схемы, ток всегда протекает через точку в схеме или через какой-либо элемент схемы.

Напряжение создается путем воздействия на электрические заряды в таких устройствах, как батареи (электрохимические реакции), генераторы (взаимодействие магнитных сил), солнечные батареи (фотогальванический эффект энергии фотонов) и т. п. Ток мы получаем, прикладывая напряжение между точками схемы.

В реальных схемах мы соединяем элементы между собой с помощью проводов, металлических проводников, каждый из которых в каждой своей точке обладает одним и тем же напряжением (по отношению, скажем, к земле). В области высоких частот или низких полных сопротивлений это утверждение не совсем справедливо, и в свое время мы обсудим этот вопрос. Сейчас же примем это допущение на веру. Мы упомянули об этом для того, чтобы вы поняли, что реальная схема не обязательно должна выглядеть как ее схематическое изображение, так как провода можно соединять по-разному.

Запомните несколько простых правил, касающихся тока и напряжения.

  1. Сумма токов, втекающих в точку, равна сумме токов, вытекающих из нее (сохранение заряда). Иногда это правило называют законом Кирхгофа для токов. Инженеры любят называть такую точку схемы узлом. Из этого правила вытекает следствие: в последовательной цепи (представляющей собой группу элементов, имеющих по два конца и соединенных этими концами один с другим) ток во всех точках одинаков.
  2. При параллельном соединении элементов напряжение на каждом из элементов одинаково. Иначе говоря, сумма падений напряжения между точками А и В, измеренная по любой ветви схемы, соединяющей эти точки, одинакова и равна напряжению между точками А и В. Иногда это правило формулируется так: сумма падений напряжения в любом замкнутом контуре схемы равна нулю. Это закон Кирхгофа для напряжений.
  3. Мощность (работа, совершенная за единицу времени), потребляемая схемой, определяется следующим образом:

Р = UI.

Вспомним, как мы определили напряжение и ток, и получим, что мощность равна: (работа/заряд) • (заряд/время). Если напряжение U измерено в вольтах, а ток I - в амперах, то мощность Р будет выражена в ваттах. Мощность величиной 1 ватт - это работа в 1 джоуль, совершен­ная за 1 с (1 Вт = 1 Дж/с).

Мощность рассеивается в виде тепла (как правило) или иногда затрачивается на механическую работу (моторы), переходит в энергию излучения (лампы, передатчики) или накапливается (батареи, конденсаторы). При разработке сложной системы одним из основных является вопрос определения ее тепловой нагрузки (возьмем, например, вычислительную машину, в которой побочным продуктом нескольких страниц результатов решения задачи становятся многие киловатты электрической энергии, рассеиваемой в пространство в виде тепла).

В дальнейшем при изучении периодически изменяющихся токов и напряжений нам придется обобщить простое выражение Р = UI для того, чтобы определять среднее значение мощности. В таком виде оно справедливо для определения мгновенного значения мощности.

Кстати, запомните, что не нужно называть ток силой тока - это неграмотно. Нельзя также называть резистор сопротивлением. О резисторах речь пойдет в следующем разделе.

1.02. Взаимосвязь напряжения и тока: резисторы

Тема эта очень обширна и интересна. В ней заключена суть электроники. Если попытаться изложить ее в двух словах, то она посвящена тому, как можно сделать элемент, имеющий ту или иную характеристику, выраженную определенной зависимостью между током и напряжением, и как его использовать в схеме. Примерами таких элементов служат резисторы (ток прямо пропорционален напряжению), конденсаторы (ток пропорционален скорости изменения напряжения), диоды (ток протекает только в одном направлении), термисторы (сопротивление зависит от температуры), тензорезисторы (сопротивление зависит от деформации) и т. д. Постепенно мы познакомимся с некоторыми экзотическими представителями этой плеяды; а сейчас рассмотрим самый нехитрый и наиболее распространенный элемент - резистор (рис. 1.2).

резистор
Рис. 1.2.

Сопротивление и резисторы. Интересно, что ток, протекающий через металлический проводник (или другой материал, обладающий некоторой проводимостью), пропорционален напряжению, приложенному к проводнику. (Что касается провода, который используется в качестве проводников в схемах, то его обычно берут достаточно большого сечения, чтобы можно было пренебречь падениями напряжения, о которых мы говорили выше.) Это ни в коем случае не обязательно для всех случаев жизни. Например, ток, протекающий через неоновую лампу, представляет собой нелинейную функцию от приложенного напряжения (он сохраняет нулевое значение до критического значения напряжения, а в критической точке резко возрастает). То же самое можно сказать и о целой группе других элементов - диодах, транзисторах, лампах и др. Резисторы изготавливают из проводящего материала (графита, тонкой металлической или графитовой пленки или провода, обладающего невысокой проводимостью). К каждому концу резистора прикреплен провод. Резистор характеризуется величиной сопротивления

R = U / I

Сопротивление R измеряется в омах, если напряжение U выражено в вольтах, а ток I в амперах. Это соотношение носит название «закон Ома». Резисторы наиболее распространенного типа - углеродистые композиционные - имеют сопротивление от 1 ома (1 Ом) до 22 мегаом (22 МОм). Резисторы характеризуются также мощностью, которую они рассеивают в пространство (наиболее распространены резисторы с мощностью рассеяния 1/4 Вт) и такими параметрами, как допуск (точность), температурный коэффициент, уровень шума, коэффициент напряжения (показывающий, в какой степени сопротивление зависит от приложенного напряжения), стабильность во времени, индуктивность и пр.

Грубо говоря, резисторы используются для преобразования напряжения в ток и наоборот. Этот вывод может показаться банальным, но скоро вы поймете, что имеется в виду.

Последовательное и параллельное соединение резисторов. Из определения сопротивления следует несколько выводов:

1.  Сопротивление двух последовательно соединенных резисторов (рис. 1.3) равно: R = Rl + R2.

При последовательном соединении резисторов всегда получаем большее сопротивление, чем сопротивление отдельного резистора.

2.  Сопротивление двух параллельно соединенных резисторов (рис. 1.4) равно R = R1R2 / (R1 + R2) или R = 1 / (1 / R1 + 1 / R2).


 

Hosted by uCoz